رویکرد تحلیل پوششی داده های متمرکز فازی برای تخصیص میزان انتشار با در نظر گرفتن سیاست محدودیت و تجارت

نوع مقاله: مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

2 گروه ریاضی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مدیریت صنعتی، دانشگاه آزاد اسلامی، واحد کرج، ایران.

چکیده

امروزه توسعه پایدار به‌عنوان مهم‌ترین مسئله در مسیر توسعه اقتصادی کشورهاست. برای دستیابی به پایداری در توسعه، کشورها باید توجه ویژه‌ای به جنبه‌های زیست‌محیطی داشته باشند. جنبه زیست‌محیطی بر سلامت اکوسیستم تمرکز دارد. برای پایداری در توسعه کشورها، انتشار گازهای گلخانه‌ای می‌بایست کنترل‌شده و کاهش یابد. سیاست محدودیت و تجارت از مؤثرترین رویکردها در کنترل و کاهش میزان انتشار گازهای گلخانه‌ای است. در سیاست محدودیت و تجارت، با توزیع مجوزهای انتشار بین کشورها، مقدار کل آلایندگی کاهش می‌یابد. هدف از این مقاله، ارائه یک مدل متمرکز تحلیل پوششی داده‌ها برای توزیع عادلانه مجوزهای انتشار در سیاست محدودیت و تجارت با توجه به کارایی کشورها است. مدل ارائه‌شده کارایی کشورها را در حضور ورودی‌های قابل‌کنترل و غیرقابل کنترل برای توزیع مجوزهای انتشار ارزیابی می‌کند. عدم قطعیت پارامترها به‌وسیله اعداد فازی در نظر گرفته می‌شود. همچنین، در این مقاله میزان انتشار گازهای منتشرشده‌ای که می‌تواند کم شود، بدون کاهش سایر خروجی‌ها مشخص می‌شود. مطالعه موردی کاربرد مدل ارائه‌شده را نشان می‌دهد. تجزیه‌وتحلیل حساسیت به‌منظور بررسی تأثیر تغییرات پارامترها بر نتایج انجام شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fuzzy centralized DEA approach for reallocation of emission permits under cap and trade regulation

نویسندگان [English]

  • Ehsan Momeni 1
  • Farhad Hosseinzadeh Lotfi 2
  • Reza Farzipoor Saen 3
1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Mathematics, Science and Research branch, Islamic Azad University, Tehran, Iran.
3 Department of Industrial Management, Faculty of Management and Accounting, Karaj Branch, Islamic Azad University, Karaj, P. O. Box: 31485-313 Iran,
چکیده [English]

Nowadays, sustainable development is the most important issue in the economic development of countries. To achieve sustainable development, countries must pay special attention to environmental aspects. Environmental aspect focuses on ecosystem stability and maintenance of ecologic functions. To make countries more sustainable, Greenhouse Gas (GHG) emission should be reduced and controlled. Cap and trade approach is one of the most effective approaches in controlling GHG emissions. In the cap and trade approach, the total amount of emissions are decreased by reallocating emission permits to countries. The objective of this paper is to propose a centralized Data Envelopment Analysis (DEA) model to reallocate emission permits in the cap and trade system given countries’ efficiencies. Our model evaluates efficiencies of countries in the presence of discretionary and nondiscretionary inputs to reallocate emission permits. The fuzzy set considers uncertainties in parameters. Also, this paper determines the amount of emitted gases that can be reduced without reducing other outputs. A case study demonstrates the applicability of the proposed model. Sensitivity analysis is carried out to investigate the impact of parameters’ variations on results.

کلیدواژه‌ها [English]

  • "Sustainable development
  • Greenhouse gas emission
  • Cap and trade
  • Data Envelopment Analysis
  • Fuzzy data"
 
Adeoti, O., & Osho, S. O. (2012). Opportunities to reduce greenhouse gas emissions from households in Nigeria. Mitigation and adaptation strategies for global change17(2), 133-152.
Åhman, M., Burtraw, D., Kruger, J., & Zetterberg, L. (2007). A ten-year rule to guide the allocation of EU emission allowances. Energy policy35(3), 1718-1730.
Amirteimoori, A., & Kordrostami, S. (2005). Allocating fixed costs and target setting: A DEA-based approach. Applied mathematics and computation171(1), 136-151.
Amirteimoori, A., & Tabar, M. M. (2010). Resource allocation and target setting in data envelopment analysis. Expert systems with applications37(4), 3036-3039.
An, Q., Wen, Y., Xiong, B., Yang, M., & Chen, X. (2017). Allocation of carbon dioxide emission permits with the minimum cost for Chinese provinces in big data environment. Journal of cleaner production142, 886-893.
Andersen, J. L., & Bogetoft, P. (2007). Gains from quota trade: theoretical models and an application to the Danish fishery. European review of agricultural economics34(1), 105-127.
Annicchiarico, B., & Di Dio, F. (2015). Environmental policy and macroeconomic dynamics in a new Keynesian model. Journal of environmental economics and management69, 1-21.
Asgari, A., Klosterman, R., & Razani, A. (2007). Sustainable urban growth management using What-if?.International journal of environmental research, 1(3), 218-230.
Azapagic, A., Perdan, S., & Clift, R. (Eds.). (2004). Sustainable development in practice: case studies for engineers and scientists. John Wiley & Sons.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science30(9), 1078-1092.
Betsill, M., & Hoffmann, M. J. (2011). The contours of “cap and trade”: the evolution of emissions trading systems for greenhouse gases. Review of policy research28(1), 83-106.
Brundtland, G. (1987). Our common future: The world commission on environment and development. Oxford University Press, Oxford.
Bruvoll, A., & Larsen, B. M. (2004). Greenhouse gas emissions in Norway: do carbon taxes work?. Energy policy32(4), 493-505.
Burtraw, D., Linn, J., Palmer, K., & Paul, A. (2014). The costs and consequences of clean air act regulation of CO2 from power plants. American economic review104(5), 557-62.
Chang, S. M., Wang, J. S., Yu, M. M., Shang, K. C., Lin, S. H., & Hsiao, B. (2015). An application of centralized data envelopment analysis in resource allocation in container terminal operations. Maritime policy & management42(8), 776-788.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429-444.
Cho, H. H., Lai, C. F., Shih, T. K., & Chao, H. C. (2016). Learning-based data envelopment analysis for external cloud resource allocation. Mobile networks and applications21(5), 846-855.
Cooper, R. N. (2007). Alternatives to Kyoto: the case for a carbon tax. Architectures for agreement: addressing global climate change in the post-Kyoto World, 105-115.
de Rome, C., & Meadows, D. H. (1972). The limits to growth: a report for the Club of Rome's project on the predicament of mankind. New York: Universe Books.
Du, S., Hu, L., & Song, M. (2016). Production optimization considering environmental performance and preference in the cap-and-trade system. Journal of cleaner production112, 1600-1607.
Elkington, J. (1997). Cannibals with forks: The triple bottom line of twenty-first century business. Capstone, Oxford.
Fang, L. (2015). Centralized resource allocation based on efficiency analysis for step-by-step improvement paths. Omega51, 24-28.
Fischer, C., & Fox, A. (2004). Output-based allocations of emissions permits. Resources for the future discussion paper4, 37.
Fischer, C., & Springborn, M. (2011). Emissions targets and the real business cycle: intensity targets versus caps or taxes. Journal of environmental economics and management62(3), 352-366.
Goulder, L. H., Parry, I. W., Williams Iii, R. C., & Burtraw, D. (1999). The cost-effectiveness of alternative instruments for environmental protection in a second-best setting. Journal of public economics72(3), 329-360.
Gupta, A. K., & Gupta, N. (2020). Effect of corporate environmental sustainability on dimensions of firm performance–Towards sustainable development: Evidence from India. Journal of cleaner production253, 119948.
Höhne, N., Fekete, H., den Elzen, M. G., Hof, A. F., & Kuramochi, T. (2018). Assessing the ambition of post-2020 climate targets: a comprehensive framework. Climate policy18(4), 425-441.
Jin, M., Granda-Marulanda, N. A., & Down, I. (2014). The impact of carbon policies on supply chain design and logistics of a major retailer. Journal of cleaner production85, 453-461.
Johansson, B. (2006). Climate policy instruments and industry—effects and potential responses in the Swedish context. Energy policy34(15), 2344-2360.
Kung, C. C., Zhang, L., & Chang, M. S. (2017). Promotion policies for renewable energy and their effects in Taiwan. Journal of cleaner production142, 965-975.
Li, F., Schwarz, L., & Haasis, H. D. (2016). A framework and risk analysis for supply chain emission trading. Logistics research9(1), 10.
Lo, Y. T. E. (2018). Detection of the temperature responses to stratospheric sulphate aerosol geoengineering (Doctoral dissertation, University of Reading). Retrieved from http://centaur.reading.ac.uk/
Lotfi, F. H., Hatami-Marbini, A., Agrell, P. J., Aghayi, N., & Gholami, K. (2013). Allocating fixed resources and setting targets using a common-weights DEA approach. Computers & industrial engineering64(2), 631-640.
Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European journal of operational research193(3), 752-760.
Malekmohammadi, N., Lotfi, F. H., & Jaafar, A. B. (2009). Centralized resource allocation in DEA with interval data: an application to commercial banks in Malaysia. International journal of mathematical analysis3(13-16), 757-764.
Mathews, J. A. (2017). Global trade and promotion of cleantech industry: a post-Paris agenda. Climate policy17(1), 102-110.
Meadows, D. H., Meadows, D. L., & Randers, J. (1992). Beyond the limits: Confronting global collapse, envisioning a sustainable future. Post Mills, Vt.: Chelsea Green Pub. Co.,.
Mishra, M., Hota, S. K., Ghosh, S. K., & Sarkar, B. (2020). Controlling waste and carbon emission for a sustainable closed-loop supply chain management under a cap-and-trade strategy. Mathematics8(4), 466.
Momeni, E., Lotfi, F. H., Saen, R. F., & Najafi, E. (2019). Centralized DEA-based reallocation of emission permits under cap and trade regulation. Journal of cleaner production234, 306-314.
Nemati, M., & Matin, R. K. (2019). A data envelopment analysis approach for resource allocation with undesirable outputs: an application to home appliance production companies. Sādhanā44(1), 11.
Paehlke, R. (1999). Towards defining, measuring and achieving sustainability: tools and strategies for environmental valuation'. In E. Becker and T. Jahn (Eds), Sustainability and the social sciences
Parker, C. F., & Karlsson, C. (2010). Climate change and the European Union's leadership moment: an inconvenient truth?. JCMS: Journal of common market studies48(4), 923-943.
Perdan, S., & Azapagic, A. (2011). Carbon trading: current schemes and future developments. Energy policy39(10), 6040-6054.
Pielke Jr, R. A. (1998). Rethinking the role of adaptation in climate policy. Global environmental change8(2), 159-170.
Redclift, M. (2005). Sustainable development (1987–2005): an oxymoron comes of age. Sustainable development13(4), 212-227.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., ... & Nykvist, B. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and society14(2).
Sacchi, S., Riva, P., Brambilla, M., & Grasso, M. (2014). Moral reasoning and climate change mitigation: The deontological reaction toward the market-based approach. Journal of environmental psychology38, 252-261.
Seeberg-Elverfeldt, C., Schwarze, S., & Zeller, M. (2009). Payments for environmental services–Carbon finance options for smallholders’ agroforestry in Indonesia. International journal of the commons3(1).
Sengupta, E., Blessinger, P., & Yamin, T. S. (2020). Introduction to teaching and learning strategies for sustainable development. In Teaching and learning strategies for sustainable development. Emerald Publishing Limited.
Siebenhüner, B. (2003). The changing role of nation states in international environmental assessments—the case of the IPCC. Global environmental change13(2), 113-123.
Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic using MATLAB (Vol. 1). Berlin: Springer.
Spangenberg, J. H. (2013). Pick simply the best: Sustainable development is about radical analysis and selective synthesis, not about old wine in new bottles. Sustainable development21(2), 101-111.
Sterner, T., & Muller, A. (2008). Output and abatement effects of allocation readjustment in permit trade. Climatic change86(1-2), 33-49.
Strategic Imperatives, U.N. (1987). Report of the world commission on environment and development: our common future. Retrieved from April 29, 2018 from http://www.un-documents.net/our-common-future.pdf.
Tanner, C., & Wölfing Kast, S. (2003). Promoting sustainable consumption: determinants of green purchases by Swiss consumers. Psychology & marketing20(10), 883-902.
Wang, J., & Wu, L. (2016). The impact of emotions on the intention of sustainable consumption choices: Evidence from a big city in an emerging country. Journal of cleaner production126, 325-336.
Whitmarsh, L., Seyfang, G., & O’Neill, S. (2011). Public engagement with carbon and climate change: To what extent is the public ‘carbon capable’?. Global environmental change21(1), 56-65.
Wu, H., Du, S., Liang, L., & Zhou, Y. (2013). A DEA-based approach for fair reduction and reallocation of emission permits. Mathematical and computer modelling58(5-6), 1095-1101.
Wu, J., Zhu, Q., Chu, J., An, Q., & Liang, L. (2016). A DEA-based approach for allocation of emission reduction tasks. International journal of production research54(18), 5618-5633.
Xun, B., Wen, F., & Tong, S. (2011). Electricity market equilibrium of thermal and wind generating plants in emission trading environment. International journal of energy sector management 5(3): 416-435. https://doi.org/10.1108/17506221111169908
   Zadeh, L. A. (1965). Information and control. Fuzzy sets8(3), 338-353.
Zhou, P., Ang, B. W., & Poh, K. L. (2008). A survey of data envelopment analysis in energy and environmental studies. European journal of operational research189(1), 1-18.
Zuo, J., & Zhao, Z. Y. (2014). Green building research–current status and future agenda: A review. Renewable and sustainable energy reviews30, 271-281.