نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت فناوری اطلاعات، دانشکده‌ی مدیریت، دانشگاه تهران، تهران، ایران.

2 گروه مدیریت صنعتی، دانشکده‌ی مدیریت، دانشگاه تهران، تهران، ایران.

3 گروه علم اطلاعات و دانش‌شناسی، دانشکده‌ی مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

توسعه‌ی اقتصادی کشور­ها با توسعه­‌ی فناوری‌های پیشرفته گره خورده ‌است. از همینرو، سیاست­‌گذاری این فناوری‌ها به یکی‌از مهم­ترین دغدغه‌های سیاستگذاران تبدیل شده ‌است. نظام نوآوری فناورانه، به‌عنوان مهم­ترین رویکرد در سیاست‌گذاری فناوری، توسعه‌ی بسیار قابل‌توجهی یافته ‌است. بنابراین ضروری است تا با استفاده از شناسایی عوامل اصلی موثر بر نظام نوآوری فناورانه چارچوبی برای سیاست­‌گذاری توسعه‌­ی فناوری­‌های نوین ارائه شود. در این مقاله به‌منظور یکپارچه­‌سازی و تجمیع مطالعات پیشین از روش فراترکیب استفاده شد. با استفاده از روش کتابخانه‌­ای، اطلاعات جمع آوری شد. جامعه‌ی آماری این تحقیق 280 مقاله ثبت‌شده با کلید­واژه‌ی نظام نوآوری فناورانه در پایگاه اسکوپوس تا پایان سال 2018 میلادی است. در پایان، از یافته‌های 52 مقاله در چارچوب نهایی استفاده شد. به‌منظور ارزیابی کیفیت تحقیقات مورد ‌استفاده از روش برنامه‌ی مهارت‌های ارزشیابی حیاتی استفاده شد. هم‌چنین با استفاده از شاخص کاپا، پایایی تحقیق تائید شد. با­ توجه به این‌که چارچوب، با بهره­‌گیری‌ازاجزاءوعوامل چارچوب‌های ارائه‌شده‌ی ‌پیشین توسعه یافته‌ است، روایی محتوایی برقرار است. به‌علاوه، چارچوب توسط پنج نفر از خبرگان حوزه‌ی نوآوری مورد ‌بررسی قرار­ گرفته و محتوای آن را مورد تائید قرار داده‌اند. چارچوب جامع نظام نوآوری فناورانه با 10 بعد اصلی و 102 زیرکارکرد مطرح شد. عوامل اصلی مورد اشاره در این چارچوب عبارتند از: توسعه، تبادل و انتشار دانش، فعالیت‌های کارآفرینانه، جهت­‌دهی به تحقیقات، شکل­‌گیری بازار، بسیج منابع، مشروعیت بخشی، سیاست‌­گذاری و ایجاد هماهنگی، ایجاد ساختار (شبکه و نهاد­های واسط)، تضعیف رژیم حاکم و بهره‌­برداری از رژیم حاکم. هم‌چنین توجه به محیط و استفاده از نگاه اقتضایی در واکنش به فرصت‌ها و تهدید‌های محیط علاوه‌بر توجه به توانمندی‌های نظام نوآوری فناورانه به‌عنوان عنصر مکمل چارچوب مطرح شد. توسعه‌ی فناوری‌های نوین موضوعی پیچیده و چند­وجهی است که نیازمند توجه به همه‌ی پویایی‌های موجود در نظام‌های نوآوری است. نگاه تک‌­بعدی به توسعه‌ی فناوری و پرداختن صرف به مواردی مانند خلق دانش و تحقیق و توسعه، منجر‌به توسعه‌ی فناوری نخواهد شد. بنابراین به‌منظور سیاست­‌گذاری فناوری‌های نوین در کشور، توجه نظام­مند به همه‌ی عوامل شناسایی‌شده در ­این تحقیق، امری ضروری است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Presenting a policy framework for high technologies, using Identification of factors affecting the development of a technological innovation system with meta-synthesis

نویسندگان [English]

  • Mohammad Mousakhani 1
  • Fateme Saghafi 2
  • Mohammad Hasanzade 3
  • mohammad ebrahim sadeghi 2

1 Department of IT Management, Faculty of Management, Tehran University, Tehran, Iran.

2 Department of Industrial Management, Faculty of Management, Tehran University, Tehran, Iran.

3 Department of Information Science and Knowledge, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Economic development of countries is associated with development of high technologies. So policy making for these technologies is one of the most important interests of policy makers. Technological innovation system, as a most important approaches in technology policy, has developed increasingly. Therefore, identification of the most important dimensions in this field to propose policy interventions for development of high technologies is credential. We used metasynthesis to integrate and combine previous studies in the field. The research Statistical population is 280 document with the keyword of technological innovation system in scopus database until end of 2018.at the end, contributions of 52 article used in the final framework. In order to evaluate the quality of the research, we used Critical Appraisal Skills Program (CASP) method. Also, kappa index used to verify the reliability of the research. Regard to developing the framework by using the elements of previous frameworks, the framework has content validity. Also the content validated by 5 experts in innovation study field. We propose the comprehensive framework of TIS with 10 dimensions and 102 activities. The main dimensions are: development, exchange and diffusion of knowledge, entrepreneurial activities, guidance of search, market formation, resource mobilization, legitimation, policy and coordination, creating structure, weaken the regime, exploit the regime. Also, attention to the context and using the contingent view to response the opportunities and threats was proposed as complementary to the framework. developing high technologies is a very complex and multi-dimensional issue which requires to identify the dynamics of innovation systems. One dimensional perspective to technology development and mere attention to knowledge creation and R&D, would not lead to technology development. Therefore, in order to policy in this field, attention to dimensions and elements which is identified in this study could be very useful.

کلیدواژه‌ها [English]

  • Technological innovation system
  • Innovation studies
  • Policy intervention
  • Meta-synthesis
Akbarian, M., & Najafi, S. (1398). اولویت­بندیاهدافاستراتژیکدرکارتامتیازیمتوازنباتلفیقدیمتلو ایانپی[Ranking of strategic objective in the balanced scorecards with analytic network process]. Journal of decision and operations research, 4 (1), 74-87.
Klini, M, R ., Burgess, n ., & Divine Blessing, A. R. (1395).  شناسایی و اولویت بندی عوامل مهم در تعیین زمان پروژه های ساختمانی با استفاده از روش های تصمیم گیری چند معیاره؛ یک مطالعه‌ی موردی [Identification and prioritizing important factors in determining of construction projects by multi-criteria decision making-with a case study]. Journal of decision and operations research, 1 (1), 1-14.
Andersen, A. D., & Gulbrandsen, M. (2020). The innovation and industry dynamics of technology phase-out in
sustainability transitions: Insights from diversifying petroleum technology suppliers in Norway.
Energy research &
social science
, 64. https://doi.org/10.1016/j.erss.2020.101447
Andersson, J., Vico, E. P., Hammar, L., & Sandén, B. A. (2017). The critical role of informed political direction for
advancing technology: the case of Swedish marine energy.
Energy policy, 101, 52-64.
Andreasen, K. P., & Sovacool, B. K. (2015). Hydrogen technological innovation systems in practice: comparing Danish
and American approaches to fuel cell development.
Journal of cleaner production, 94, 359-368.
Atteridge, A., & Weitz, N. (2017). A political economy perspective on technology innovation in the Kenyan clean
cookstove sector.
Energy policy, 110, 303-312.
Beck, C. T. (2002). A meta-synthesis of qualitative research.
MCN: the American journal of maternal/child
nursing
, 27(4), 214-221.
Bento, N., & Fontes, M. (2015a). The construction of a new technological innovation system in a follower country:
wind energy in Portugal.
Technological forecasting and social change, 99, 197-210.
Bento, N., & Fontes, M. (2015b). Spatial diffusion and the formation of a technological innovation system in the
receiving country: the case of wind energy in Portugal.
Environmental innovation and societal transitions, 15, 158-
179.
Bergek, A., Hekkert, M., & Jacobsson, S. (2008). Functions in innovation systems: a framework for analysing energy
system dynamics and identifying goals for system-building activities by entrepreneurs and policy makers. In T. Foxon,
J. Köhler, & C. Oughton (Eds.),
Innovation for a low carbon economy: economic, institutional and management
approaches
. Edward Elgard Publishing, Inc.
Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sandén, B., & Truffer, B. (2015). Technological innovation
systems in contexts: conceptualizing contextual structures and interaction dynamics.
Environmental innovation and
societal transitions
, 16, 51-64.
Binz, C., & Truffer, B. (2012). Technological innovation systems in multi-scalar space.
Geographica helvetica, 66(4),
254-260.
Binz, C., Harris-Lovett, S., Kiparsky, M., Sedlak, D. L., & Truffer, B. (2016). The thorny road to technology
legitimation—Institutional work for potable water reuse in California.
Technological forecasting and social
change
, 103, 249-263.
Binz
,C., Truffer, B., Li, L., Shi, Y., & Lu, Y. (2012). Conceptualizing leapfrogging with spatially coupled innovation
systems: The case of onsite wastewater treatment in China.
Technological forecasting & social change, 79, 155–171.
Blum, N. U., Bening, C. R., & Schmidt, T. S. (2015). An analysis of remote electric mini-grids in Laos using the
technological innovation systems approach.
Technological forecasting and social change, 95, 218-233.
Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems.
Journal of
evolutionary economics, 1
(2), 93-118.
Chung, C.-c. (2018). Technological innovation systems in multi-level governance frameworks: the case of Taiwan's
biodiesel innovation system (1997e2016).
Journal of cleaner production, 184, 130-142.
Coenen, L., & DíazLópez, F. (2010). Comparing systems approaches to innovation and technological change for
sustainable and competitive economies: an explorative study into conceptual commonalities, differences and
complementarities.
Journal of cleaner production, 18(12), 1149-1160.
Cooke, P. (1992). Regional innovation systems: competitive regulation in the new Europe.
Geoforum, 23(3), 365-382.
Corsatea, T. D. (2014). Increasing synergies between institutions and technology developers: lessons from marine
energy.
Energy policy, 74, 682-694.
Denzin, N. K. (2009). The elephant in the living room: or extending the conversation about the politics of evidence.
Qualitative research, 9(2), 139-160.
Dewald, U., & Achternbosch, M. (2016). Why more sustainable cements failed so far? disruptive innovations and their
barriers in a basic industry.
Environmental innovation and societal transitions, 19, 15-30.
Edsand, H, E. (2017). Identifying barriers to wind energy diffusion in Colombia: a function analysis of the technological
innovation system and the wider context.
Technology in society, 49, 1-15.
Eri, T. S., Bondas, T., Gross, M. M., Janssen, P., & Green, J. M. (2015). A balancing act in an unknown territory: a
metasynthesis of first-time mothers' experiences in early labour.
Midwifery, 31(3), e58-67.
26
نشریه تصمیمگیری و تحقیق در عملیات، دوره ، 5شماره ( ،)1بهار ،1399صفحه: 13-27
Gandenberger, C., & Strauch, M. (2018). Wind energy technology as opportunity for catching-up? a comparison of
the tis in Brazil and China.
Innovation and development, 8(2), 287-308.
Gosens, J., Lu, Y., & Coenen, L. (2015). The role of transnational dimensions in emerging economy ‘technological
innovation systems’ for clean-tech.
Journal of cleaner production, 86, 378-388.
Haley, B. (2017). Designing the public sector to promote sustainability transitions: Institutional principles and a case
study of ARPA-E.
Environmental innovation and societal transitions, 25, 107-121.
Haley, B. (2018). Integrating structural tensions into technological innovation systems analysis: application to the case
of transmission interconnections and renewable electricity in Nova Scotia, Canada.
Research policy, 47(6), 1147-
1160.
Hansen, T., & Coenen, L. (2017). Unpacking resource mobilisation by incumbents for biorefineries: the role of microlevel factors for technological innovation system weaknesses.
Technology analysis & strategic management, 29(5),
500-513.
Hanson, J. (2018). Established industries as foundations for emerging technological innovation systems: the case of
solar photovoltaics in Norway.
Environmental innovation and societal transitions, 26, 64-77.
Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation
systems: A new approach for analysing technological change.
Technological forecasting and social change, 74(4),
413-432.
Hellsmark, H., Mossberg, J., Söderholm, P., & Frishammar, J. (2016). Innovation system strengths and weaknesses in
progressing sustainable technology: the case of Swedish biorefinery development.
Journal of cleaner production,
131
, 702-715.
Huang, P., Negro, S. O., Hekkert, M. P., & Bi, K. (2016). How China became a leader in solar PV: an innovation
system analysis.
Renewable and sustainable energy reviews, 64, 777-789.
Jacobsson, S., & Bergek, A. (2011). Innovation system analyses and sustainability transitions: contributions and
suggestions for research.
Environmental innovation and societal transitions, 1, 41-57.
Jansma, S. R., Gosselt, J. F., & de Jong, M. D. (2018). Technological start-ups in the innovation system: an actororiented perspective.
Technology analysis & strategic management, 30(3), 282-294.
Karanasios, K., & Parker, P. (2018). Explaining the diffusion of renewable electricity technologies in Canadian remote
indigenous communities through the technological innovation system approach.
Sustainability, 10(11), 1-28.
Kebede, K. Y., & Mitsufuji, T. (2017). Technological innovation system building for diffusion of renewable energy
technology: a case of solar PV systems in Ethiopia.
Technological forecasting and social change, 114, 242-253.
Kivima, P., Boon, W., Hyysalo, S., & Klerkx, L. (2018). Towards a typology of intermediaries in sustainability
transitions: A systematic review and a research agenda.
Research policy, 48(4), 1062-1075.
Kivimaa, P. (2014). Government-affiliated intermediary organisations as actors in system-level transitions.
Research
policy, 43
(8), 1370-1380.
Kivimaa, P., & Kern, F. (2016). Creative destruction or mere niche support? Innovation policy mixes for sustainability
transitions.
Research policy, 45(1), 205-217.
Kivimaa, P., & Virkamäki, V. (2014). Policy mixes, policy interplay and low carbon transitions: the case of passenger
transport in Finland.
Environmental policy and governance, 24(1), 28-41.
Kriechbaum, M., Brent, A. C., & Posch, A. (2018). Interaction patterns of systemic problems in distributed energy
technology diffusion: a case study of photovoltaics in the Western cape province of South Africa.
Technology analysis
& strategic management, 30
(12), 1422-1436.
Laes, E., Valkering, P., & De Weerdt, Y. (2019). Diagnosing barriers and enablers for the Flemish energy
transition.
Sustainability, 11(20), 5558.
Lukkarinen, J., Berg, A., Salo, M., Tainio, P., Alhola, K., & Antikainen, R. (2018). An intermediary approach to
technological innovation systems (TIS)—the case of the cleantech sector in Finland.
Environmental innovation and
societal transitions
, 26, 136-146.
Mäkitie, T., Andersen, A. D., Hanson, J., Normann, H. E., & Thune, T. M. (2018). Established sectors expediting clean
technology industries? The Norwegian oil and gas sector's influence on offshore wind power.
Journal of cleaner
production
, 177, 813-823.
Malerba, F. (2002). Sectoral systems of innovation and production.
Research policy, 31(2), 247-264.
Markard, J. (2018). The life cycle of technological innovation systems.
Technological forecasting and social change.
https://doi.org/10.1016/j.techfore.2018.07.045
Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: towards an
integrated framework.
Research policy, 37(4), 596-615.
Markard, J., Hekkert, M., & Jacobsson, S. (2015)
.The technological innovation systems framework: response to six
criticisms.
Environmental innovation and societal transitions, 16, 76-86.
Meelen, T., & Farla, J. (2013). Towards an integrated framework for analysing sustainable innovation policy.
Technology analysis & strategic management, 25(8), 957-970.
Musiolik, J., & Markard, J. (2011). Creating and shaping innovation systems: formal networks in the innovation system
for stationary fuel cells in Germany.
Energy policy, 39, 1909–1922.
Musiolik, J., Markard, J., & Hekkert, M. (2012). Networks and network resources in technological innovation systems:
towards a conceptual framework for system building.
Technological forecasting and social change, 79(6), 1032-
1048.
Musiolik, J., Markard, J., Hekkert, M., & Furrer, B. (2018). Creating innovation systems: How resource constellations
affect the strategies of system builders.
Technological forecasting and social change.
https://doi.org/10.1016/j.techfore.2018.02.002
Nasiri, M., Ramazani Khorshid-Doust, R., & Bagheri Moghaddam, N. (2015). The status of the hydrogen and fuel cell
innovation system in Iran.
Renewable and sustainable energy reviews, 43, 775-783.
Negro, S, Hekkert, M, & Smits, R. E. (2007). Explaining the failure of the Dutch innovation system for biomass
digestion—A functional analysis.
Energy policy, 35(2), 925-938.
27
ارائهی چارچوب سیاستگذاری فناوریهای نوین با استفاده از شناسایی عوامل موثر بر توسعهی نظام نوآوری فناورانه با رویکرد فراترکیب
Noblit, G. W., & Hare, R. D. (1988). Meta-ethnography: synthesizing qualitative studies (Vol. 11). Counterpoints.
Normann, H. E., & Hanson, J. (2018). The role of domestic markets in international technological innovation systems.
Industry and innovation, 25(5), 482-504.
Orstavik, F. (2014). Innovation as re-institutionalization: a case study of technological change in housebuilding in
Norway.
Construction management and economics, 32(9), 857-873.
Palm, A. (2015). An emerging innovation system for deployment of building-sited solar photovoltaics in Sweden.
Environmental innovation and societal transitions, 15, 140-157.
Panetti, E., Parmentola, A., Wallis, S. E., & Ferretti, M. (2018). What drives technology transitions? An integration of
different approaches within transition studies.
Technology analysis & strategic management, 30(9), 993-1014.
Perez Vico, E. (2014). An in-depth study of direct and indirect impacts from the research of a physics professor.
Science
and public policy, 41
(6), 701-719.
Planko, J., Cramer, J., Chappin, M. M. H., & Hekkert, M. P. (2016). Strategic collective system building to
commercialize sustainability innovations.
Journal of cleaner production, 112, 2328-2341.
Randelli, F., & Rocchi, B. (2017). Analysing the role of consumers within technological innovation systems: The case
of alternative food networks.
Environmental innovation and societal transitions, 25, 94-106.
Raven, R., & Walrave, B. (2020). Overcoming transformational failures through policy mixes in the dynamics of
technological innovation systems.
Technological forecasting and social change, 153.
https://doi.org/10.1016/j.techfore.2018.05.008
Reichardt, K., Rogge, K, & Negro, S. O. (2017). Unpacking policy processes for addressing systemic problems in
technological innovation systems: the case of offshore wind in Germany.
Renewable and sustainable energy reviews,
80
, 1217–1226.
Sambo, P., & Alexander, P. (2018). A scheme of analysis for e V oting as a technological innovation system.
The
electronic journal of information systems in developing countries
, 84(2), e12020.
Sandelowski, M., & Barroso, J. (2006).
Handbook for synthesizing qualitative research. Springer Publishing Company.
Schmidt, T. S., & Dabur, S. (2014). Explaining the diffusion of biogas in India: a new functional approach considering
national borders and technology transfer.
Environmental economics and policy studies, 16(2), 171–199.
Schreiber, R., Crooks, D., & Stern, P. N. (1997). Qualitative meta-analysis. In J. M. Morse (Ed.),
Completing a
qualitative project
(pp. 311–326). Thousand Oaks, CA: Sage.
Soete, L., Verspagen, B., & Ter Weel, B. (2010). Systems of innovation. In
Handbook of the economics of innovation.
Elsivier.
Suurs, R, & Hekkert, M. (2012). Motors of sustainable innovatio understanding transitions from a technological
innovation system’s perspective. In G. Verbong, Loorbach, D (Eds.),
Governing the energy transition. reality, illusion
ornecessity?
(pp. 152–179).
Tigabu, A. D. (2018). Analysing the diffusion and adoption of renewable energy technologies in Africa: the functions
of innovation systems perspective.
African journal of science, technology, innovation and development, 10(5), 615-
624.
Vasseur, V., Kamp, L. M., & Negro, S. O. (2013). A comparative analysis of photovoltaic technological innovation
systems including international dimensions: the cases of Japan and the Netherlands.
Journal of cleaner production,
48
, 200-210.
Walrave, B., & Raven, R. (2016). Modelling the dynamics of technological innovation systems.
Research policy, 45(9),
1833-1844.
Walsh, D., & Downe, S. (2005). Meta‐synthesis method for qualitative research: a literature review.
Journal of
advanced nursing
, 50(2), 204-211.
Weber, K. M., & Rohracher, H. (2012). Legitimizing research, technology and innovation policies for transformative
change: combining insights from innovation systems and multi-level perspective in a comprehensive ‘failures’
framework.
Research policy, 41(6), 1037-1047.
Wieczorek, A. J., & Hekkert, M. P. (2012). Systemic instruments for systemic innovation problems: a framework for
policy makers and innovation scholars.
Science and public policy, 39(1), 74-87.
Wieczorek, A. J., Hekkert, M. P., Coenen, L., & Harmsen, R. (2015). Broadening the national focus in technological
innovation system analysis: The case of offshore wind.
Environmental innovation and societal transitions, 14, 128-
148.
Wieczorek, A. J., Negro, S. O., Harmsen, R., Heimeriks, G. J., Luo, L., & Hekkert, M. P. (2013). A review of the
European offshore wind innovation system.
Renewable and sustainable energy reviews, 26, 294-306.
Woolthuis, R. K., Lankhuizen, M., & Gilsing, V. (2005). A system failure framework for innovation policy
design.
Technovation, 25(6), 609-619.
Yahyapour, S., Shamizanjani, M., & Mosakhani, M. (2015). A conceptual breakdown structure for knowledge
management benefits using meta-synthesis method.
Journal of knowledge management, 19(6), 1295-1309.
Zimmer, L. (2006). Qualitative meta‐synthesis: a question of dialoguing with texts.
Journal of advanced nursing, 53(3),
311-318