آشنایی با مجموعه ی فازی مردد و انواع آن

نوع مقاله: مقاله مروری

نویسنده

گروه ریاضی و آمار، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران.

چکیده

از آنجاییکه مسائل زندگی روزمره نسبی و مبهم می باشند، تا کنون ابزارهای مختلفی نظیر مجموعه های فازی، مجموعه های فازی شهودی و ... برای بیان این ابهامات در مدل بندی ریاضی بیان شده است. تورا در سال 2009 با معرفی مجموعه های فازی مردد افق جدیدی برای بحث روی مسائلی که با تردید در تصمیم گیری مواجه هستند، گشود. در ادامه ی کار تورا به گسترش کمی و کیفی مجموعه های فازی مردد پرداخته شد. در این مقاله جهت آشنایی هر چه بیشتر پژوهشگران با مجموعه های فازی مردد به مروری برانواع مجموعه های فازی مردد نظیر مجموعه های فازی مردد دوآل، مجموعه های فازی مردد تعمیم یافته و... که تا کنون تعریف شده است می پردازیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hesitant fuzzy set and its types

نویسنده [English]

  • Fatemeh Babakordi
Department of Mathematics and statistics, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
چکیده [English]

Since the problems of everyday life are relative , so far various tools such as fuzzy sets, intuitive fuzzy sets, etc. have been expressed to express these ambiguities in mathematical modeling. In 2009, Torra introduced a new horizon for the discussion of hesitant fuzzy sets to discuss issues that are uncertain about decision making. In the course of his work, the quantitative and qualitative expansion of uncertain fuzzy sets is discussed. In this article, for the purpose of introducing more researchers to hesitant fuzzy sets, we review the types of hesitant fuzzy sets such as dual uncertain fuzzy sets, generalized hesitant fuzzy sets, and so on.

کلیدواژه‌ها [English]

  • Fuzzy set
  • Hesitant Fuzzy Set
  • Qualitative hesitant fuzzy set
  • quantitative hesitant fuzzy set
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp. 1-137). Physica, Heidelberg. Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic press.

Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539.

Zhu, B., Xu, Z., & Xia, M. (2012). Dual hesitant fuzzy sets. Journal of applied mathematics. DOI:10.1155/2012/879629.

Chen, N., Xu, Z., & Xia, M. (2013). Interval-valued hesitant preference relations and their applications to group decision making. Knowledge-based systems, 37, 528-540.

Qian, G., Wang, H., & Feng, X. (2013). Generalized hesitant fuzzy sets and their application in decision support system. Knowledge-based systems, 37, 357-365.

Wei, G., Wang, H., Zhao, X., & Lin, R. (2014). Hesitant triangular fuzzy information aggregation in multiple attribute decision making. Journal of intelligent & fuzzy systems, 26(3), 1201-1209.

Yu, D. (2013). Triangular hesitant fuzzy set and its application to teaching quality evaluation. Journal of information &computational science, 10(7), 1925-1934.

Zhao, X., Lin, R., & Wei, G. (2014). Hesitant triangular fuzzy information aggregation based on einstein operations and their application to multiple attribute decision making. Expert systems with applications, 41(4), 1086-1094.

Zhu, B., & Xu, Z. (2016). Extended hesitant fuzzy sets. Technological and economic development of economy, 22(1), 100-121.

Wang, F., Li, X., & Chen, X. (2014). Hesitant fuzzy soft set and its applications in multicriteria decision making. Journal of applied mathematics. DOI:10.1155/2014/643785.

Rodríguez, R. M., Martínez, L., Torra, V., Xu, Z. S., & Herrera, F. (2014). Hesitant fuzzy sets: state of the art and future directions. International journal of intelligent systems, 29(6), 495-524.

Liao, H., Xu, Z., & Zeng, X. J. (2014). Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Information sciences, 271, 125-142.

Li, D., Zeng, W., & Li, J. (2015). New distance and similarity measures on hesitant fuzzy sets and their applications in multiple criteria decision making. Engineering applications of artificial intelligence, 40, 11-16.

Wei, G., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2016). Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iranian journal of fuzzy systems, 13(4), 1-16.

Wang, J. Q., Wu, J. T., Wang, J., Zhang, H. Y., & Chen, X. H. (2014). Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Information sciences, 288, 55-72.

Yang, S., & Ju, Y. (2014). Dual hesitant fuzzy linguistic aggregation operators and their applications to multi-attribute decision making. Journal of intelligent & fuzzy systems, 27(4), 1935-1947.

Nguyen, H. T., Prasad, N. R., Walker, E. A., & Walker, C. L. (2002). A first course in fuzzy and neural control. Chapman and hall/CRC.

Dehmiry, A. H., Mashinchi, M., Mesiar, R. (2017). Hesitant -Fuzzy Sets. International journal of intelligent systems, 0, 1–16.

Amin, F., Fahmi, A., Abdullah, S., Ali, A., Ahmad, R., & Ghani, F. (2018). Triangular cubic linguistic hesitant fuzzy aggregation operators and their application in group decision making. Journal of intelligent & fuzzy systems, 34(4), 2401-2416.

Ullah, K., Mahmood, T., Jan, N., Broumi, S., & Khan, Q. (2018). On bipolar-valued hesitant fuzzy sets and their applications in multi-attribute decision making. Nucleus, 55(2), 85-93.

Alcantud, J.C.R., Santos-García, G., Peng X and Zhan J. (2019). dual extended hesitant fuzzy sets. Symmetry, 11(5). DOI:10.3390/sym11050714.

Rong, Y., Pei, Z., & Liu, Y. (2020). Hesitant fuzzy linguistic hamy mean aggregation operators and their application to linguistic multiple attribute decision-making. Mathematical problems in engineering. DOI:10.1155/2020/3262618.

Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International journal of approximate reasoning, 52(3), 395-407.